Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 18(1): 120-128, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643238

RESUMO

Background/purpose: Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that can differentiate into various lineages such as odontoblasts, osteoblasts, and chondrocytes. Regulation of hDPSCs differentiation with small-molecule compounds can be a useful tool for tissue engineering and regenerative therapy. Forskolin is an agonist of adenylate cyclase that promotes cyclic adenosine monophosphate production. However, the role of Forskolin in regulating the osteogenic differentiation of hDPSCs is still unknown. Materials and methods: A cell counting kit-8 (CCK-8) assay was performed to screen out the safety concentrations of Forskolin. Following, quantitative polymerase chain reaction (qPCR) and alizarin red staining were performed to detect bone-related gene expression and mineralized deposit formation. Furthermore, we prepared cell sheets which were followed by a 3D culture for cell pellet formation. Finally, the hDPSC cell pellets were transplanted into immunodeficient mice. Results: CCK-8 assay showed 5 µM and 10 µM Forskolin had no significant inhibition on the proliferation of hDPSCs. The qPCR indicated Forskolin (5, 10 µM) enhanced osteogenic differentiation of hDPSCs by upregulating bone-related genes. Alizarin red staining and its quantification analysis demonstrated Forskolin in 5 µM and 10 µM similarly enhanced the mineralized deposit formation of hDPSCs in vitro. After six weeks of transplantation, immunohistochemical stains showed that osteopontin expression and bone formation were significantly boosted in the Forskolin-treated group than in the normal osteogenic inducing group. Conclusion: Our results indicate Forskolin enhances osteogenic differentiation of hDPSCs in vitro and boosts bone formation in vivo.

2.
Tissue Cell ; 79: 101955, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265367

RESUMO

Sodium Hypochlorite (NaOCl) and Ethylene Diamine Tetraacetic Acid (EDTA) can change the biochemical and biophysical properties of dentin. However, the response of human dental pulp stem cells (hDPSCs) to NaOCl and EDTA-treated dentin remains unknown. This study was conducted to investigate the effect of NaOCl and EDTA on cell proliferation, osteogenic/odontogenic differentiation, and the response to mechanosensitive gene expression in hDPSCs. Dentin slices were treated with 5.25% NaOCl, 17% EDTA, and saline (0.9% NaCl) separately. The cell viability and osteogenic/odontogenic differentiation of hDPSCs were analyzed using scanning electron microscopy, cell counting assay, alkaline phosphatase (ALP) staining, and quantitative polymerase chain reaction (qPCR). Besides, the hardness was measured by a Vickers microhardness tester. The expression of mechanosensitive genes was detected by the qPCR assay. All the irrigant-treated dentin allowed cell attachment. The EDTA-treated dentin significantly boosted the ALP and osteogenic/odontogenic differentiation, followed by NaCl and NaOCl groups. Remarkably, these trends were similar to the expression of mechanosensitive genes but were different from the trends of hardness values. The effect of irrigant-treated dentin on regulating hDPSCs differentiation might correlate with mechanosensitive signals. Whereas, the hardness changes between groups might not produce significant roles in regulating osteogenic/odontogenic differentiation of stem cells on dentin surfaces.


Assuntos
Polpa Dentária , Hipoclorito de Sódio , Humanos , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/metabolismo , Ácido Edético/farmacologia , Dentina , Diferenciação Celular/genética , Células-Tronco , Proliferação de Células , Expressão Gênica
3.
Int J Stem Cells ; 15(4): 384-394, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35769055

RESUMO

Background and Objectives: Dental pulp stem cells (DPSCs) play an important role in the repair of tooth injuries. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a Na+-coupled HCO3- transporter encoded by the solute carrier 4A4 (SLC4A4) gene and plays a crucial role in maintaining the pH of DPSCs. Our previous research confirmed that NBCe1 is highly expressed in odontoblasts during the development of the tooth germ. Therefore, in this study, we aimed to investigate the effect of NBCe1 on odontogenic differentiation of DPSCs and further clarify the underlying mechanisms. Methods and Results: DPSCs were isolated and identified, and the selective NBCe1 inhibitor S0859 was used to treat DPSCs. We used a cell counting Kit-8 assay to detect cell proliferative ability, and intracellular pH was assessed using confocal microscopy. Odontogenic differentiation of DPSCs was analyzed using real-time PCR and Alizarin Red S staining, and the NF-κB pathway was assessed using western blotting. Our results indicated that 10 µM S0859 was the optimal concentration for DPSC induction. Intracellular pH was decreased upon treatment with S0859. The mRNA expressions of DSPP, DMP1, RUNX2, OCN, and OPN were upregulated in the NBCe1 inhibited group compared to the controls. Moreover, NBCe1 inhibition significantly activated the NF-κB pathway, and a NF-κB inhibitor reduced the effect of NBCe1 on DPSC differentiation. Conclusions: NBCe1 inhibition significantly promotes odontogenic differentiation of DPSCs, and this process may be regulated by activating the NF-κB signaling pathway.

4.
Mar Drugs ; 21(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662174

RESUMO

The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Longevidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
5.
Biomed Res Int ; 2020: 7141725, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685521

RESUMO

Electrocardiogram (ECG) signal is critical to the classification of cardiac arrhythmia using some machine learning methods. In practice, the ECG datasets are usually with multiple missing values due to faults or distortion. Unfortunately, many established algorithms for classification require a fully complete matrix as input. Thus it is necessary to impute the missing data to increase the effectiveness of classification for datasets with a few missing values. In this paper, we compare the main methods for estimating the missing values in electrocardiogram data, e.g., the "Zero method", "Mean method", "PCA-based method", and "RPCA-based method" and then propose a novel KNN-based classification algorithm, i.e., a modified kernel Difference-Weighted KNN classifier (MKDF-WKNN), which is fit for the classification of imbalance datasets. The experimental results on the UCI database indicate that the "RPCA-based method" can successfully handle missing values in arrhythmia dataset no matter how many values in it are missing and our proposed classification algorithm, MKDF-WKNN, is superior to other state-of-the-art algorithms like KNN, DS-WKNN, DF-WKNN, and KDF-WKNN for uneven datasets which impacts the accuracy of classification.


Assuntos
Arritmias Cardíacas/fisiopatologia , Biologia Computacional , Eletrocardiografia , Processamento Eletrônico de Dados , Aprendizado de Máquina , Modelos Cardiovasculares , Arritmias Cardíacas/diagnóstico , Humanos
6.
Parasitol Res ; 115(12): 4611-4616, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27627911

RESUMO

Both schistosomes and malaria parasites produce hemozoin and cause host anaemia. However, the relationship between anaemia and hemozoin is unclear. Although some studies have proposed that hemozoin is related to anaemia in malaria patients, whether hemozoin alone can cause anaemia in patients infected by malaria parasites or schistosomes is uncertain. To investigate the effect of hemozoin on hosts, ß-haematin was injected intravenously to normal mice. Then, liver and spleen tissues were observed. Mouse blood was examined. Red blood cells (RBCs), white blood cells (WBCs) and haemoglobin were analysed. Macrophage changes in the spleens and marrow cells were compared using immunofluorescence and H&E or Giemsa stain, respectively. We found that after 15 injections of ß-haematin, a large amount of ß-haematin was observed to deposit in the livers and spleens. Splenomegaly and bone marrow mild hyperplasia were detected. The average number of RBCs, average number of WBCs and average concentration of haemoglobin decreased significantly from 9.36 × 1012 cells/L to 8.7 × 1012 cells/L, 3.8 × 109 cells/L to 1.7 × 109 cells/L and 142.8 g/L to 131.8 g/L, respectively. In specific, the number of macrophages in the spleens greatly increased after ß-haematin infection. The results showed that injections of ß-haematin alone can cause anaemia possibly through hypersplenism.


Assuntos
Anemia/etiologia , Hemeproteínas/efeitos adversos , Anemia/sangue , Animais , Contagem de Células Sanguíneas , Células Sanguíneas/citologia , Eritrócitos/parasitologia , Hemeproteínas/química , Humanos , Fígado/parasitologia , Macrófagos/parasitologia , Camundongos , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...